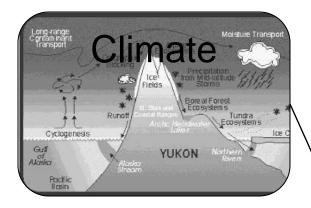
Broad EcosystemClassification & Mapping

Applications in Regional Planning

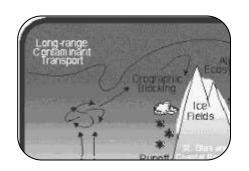
Dawson Regional Planning Conference January 18, 2012 Dawson City, Yukon

Presenter: Nadele Flynn, ELC Coordinator Department of Environment, Yukon government


Broad EcosystemClassification and Mapping

- What
- Why
- How
- Dawson study
 - Predictive Ecosystem Mapping
 - Methods
- Applications

What is ecosystem classification?


Ecosystem Unit

Why?

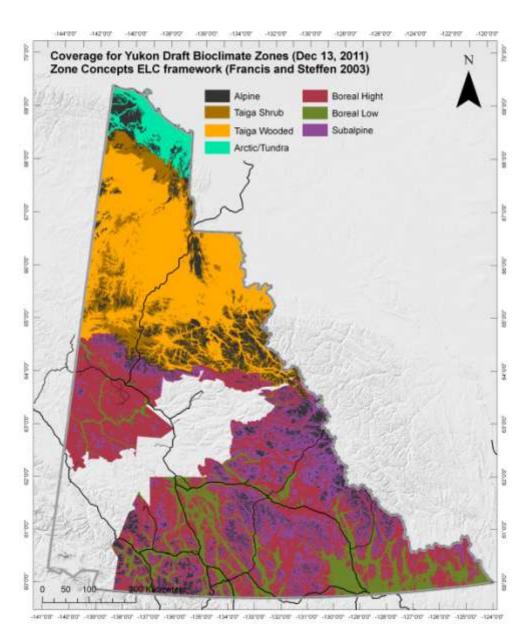
- A common language
- A tool for management decisions

How Broad Ecosystems are classified

Bioclimate
zone (alpine,
boreal low &
high, Taiga
shrub &
wooded)

Broad Ecosystem Unit Moisture – dry, moist, wet (landscape position)

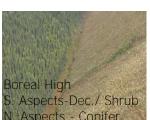
Vegetation
phase (herb,
shrub, dec,
mixed, con)


Bioclimatic Ecosystem Classification

Reference sites

- reflects regional climate
- characterizes bioclimatic zones and subzones
- climate envelop
- Vegetation defined broadly for broad ecosystems

Bioclimatic Zones

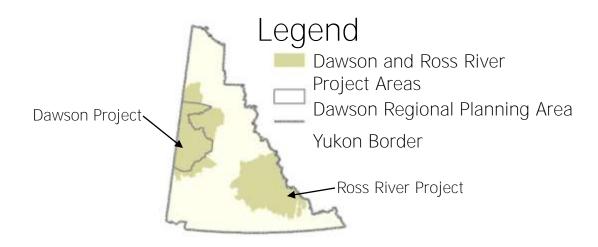


Bioclimate Ecosystem Classification

	Yukon ELC Level	Description							
	Bioclimate Zone	Boreal High							
_	Bioclimate Subzone	Boreal High, Klondike Plateau							
	Broad Ecosystem Unit (BEU)	Steep Slope - Dry		Ridge - Dry		Gentle slopes - Mesic			
	Phase	Shrub	Treed, Deciduous/ Mixedwood	Shrub	Treed, Deciduous- Mixedwood	Treed, Coniferous			
	Ecosite	Willow/ Sage	Aspen/ Fescue	Willow- Shrub Birch/ Feathermoss	Paper Birch- White Spruce/ Feathermoss	White Spruce/ Lichen	White Spruce-Black Spruce/ Feathermoss 5-7 (young to old forest)		
	Phase	3b (tall shrub)	5-7 (young to old forest)	3b (tall shrub)/ES – early seral	4-5 (pole to young forest)/ MS - mid seral	5-7 (young to old forest)			

Broad Ecosystem Classification

Group	Type	Phase
DRY	Rock (700)	High Elevation Rock (700)
		Low-Middle Elevation Rock (700)
	Ridge (110)	Herb-Bryoid (111)
		Herb (111) and Shrub (112)
		Deciduous (113) and Mixedwood (114)
	Steep South Slope (120)	Coniferous (115) Herb-Bryoid (121)
	Steep South Stope (120)	Shrub (122) Deciduous (123) Mixedwood (124)
		Coniferous (125)
	Upper Slope (130)	Herb-Bryoid (131) and Shrub (132)
		Deciduous (133) and Mixed-wood (134)
		Coniferous (135)
MOIST	Gentle Slope and Plain (140)	Herb-Bryoid (141)
		Shrub (142)
		Deciduous (143) and Mixedwood (144)
		Coniferous (145)
	Steep North Slope (150)	Herb-Bryoid (151) and Shrub (152)
		Deciduous (153) and Mixedwood (154)
		Coniferous (155)
WET	Drainage/Depression (160)	Herb-Bryoid (161) and Shrub (162)
		Deciduous (163) and Mixedwood (164)
		Coniferous (165)
	Wetlands (310)	Herb (311)
		Shrub (312)
	Floodplains (370/380/390)	Treed (315) Gravel Bar-Herb (371)
	1 1000pianis (370/300/370)	Shrub (372)
		Deciduous (383)
		Mixedwood (384)
		Coniferous (395)
AQUATIC**	Open Water (400)	Water (401)
		Ice (Glacier) (403)
DISTURBANCE		Natural (501)
**		Anthropogenic (502)
		Mines (503)



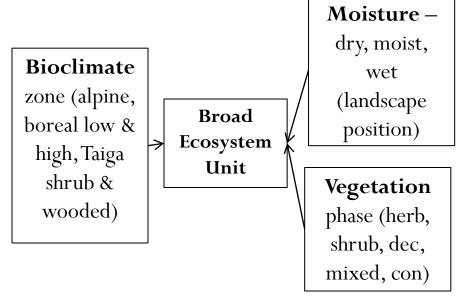
Broad Ecosystem Mapping – Predictive Ecosystem Mapping (PEM)

Broad Ecosystem Mapping - Dawson & Ross River

Base layer for integrated resource planning

Predictive Ecosystem Mapping (PEM) – Dawson Planning Region

Goals


- Develop maps and unit descriptions
- Map special features
- Assess ELC framework concepts

Predictive Ecosystem Mapping (PEM) – Dawson Planning Region



Methods

- Broad ecosystem classification
- Landscape position
- Integrate information
- Ecological context

Edaphic grid used to organize broad ecosystems

Landscape Position

700 - Rock

110 – Ridge

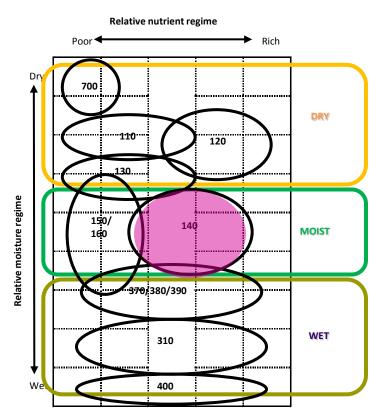
120 – Steep South Slope

130 - Upper Slope

140 - Gentle Slope and Plain

150 - Steep North Slope

160 – Drainage or Depression


310 - Wetland

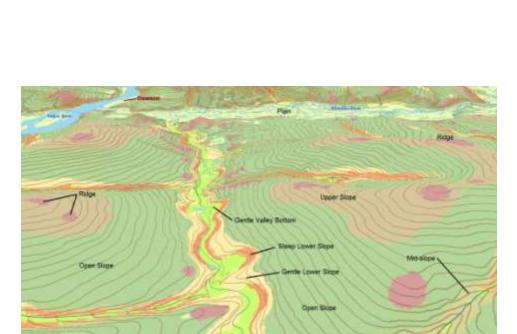
370 - Low Floodplain

380 - Middle Bench Floodplain

390 – High Bench Floodplain

400 - Open Water

Broad Ecosystem units (BEU)

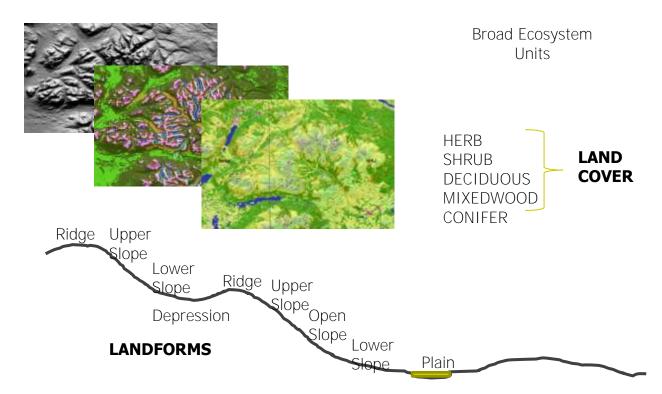

Landscape position

vegetation type

e.g. Ridge (dry) - herb

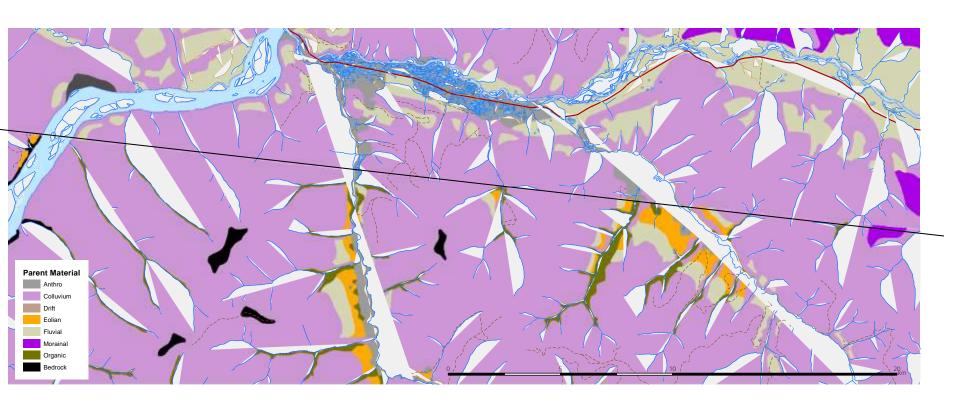
Methods

- Broad ecosystem classification
- Landscape position
- Integrate information
- Ecological context

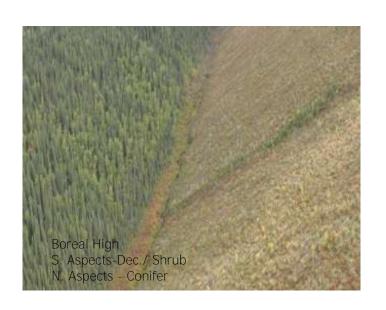


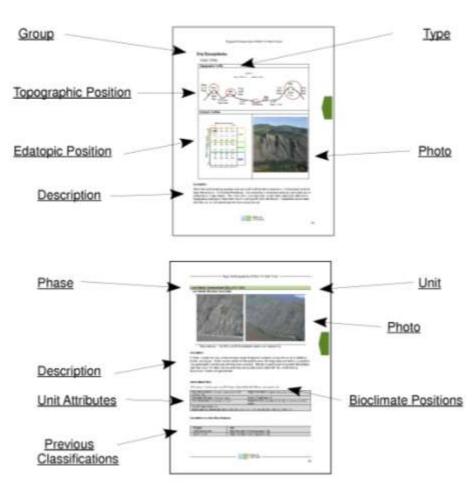
Dawson Landforms

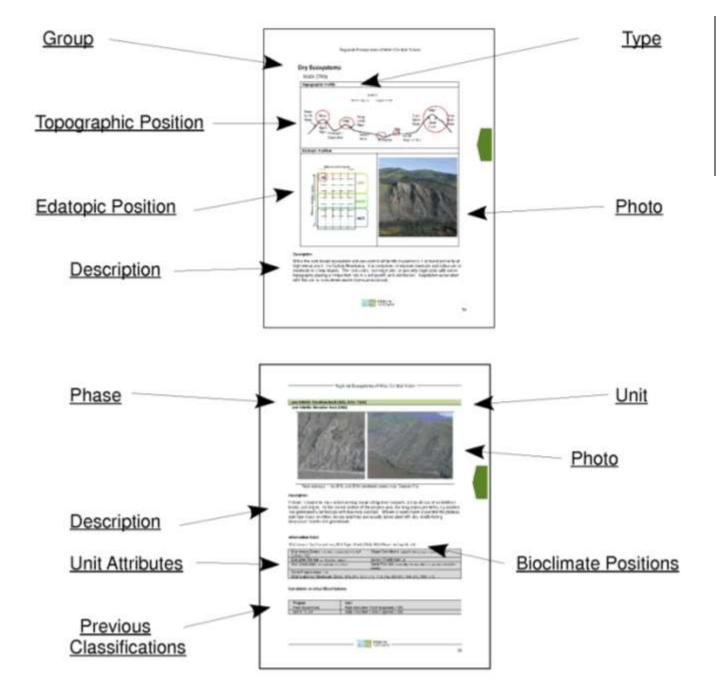
Methods


- Broad ecosystem classification
- Landscape position
- Integrate information
- Ecological context

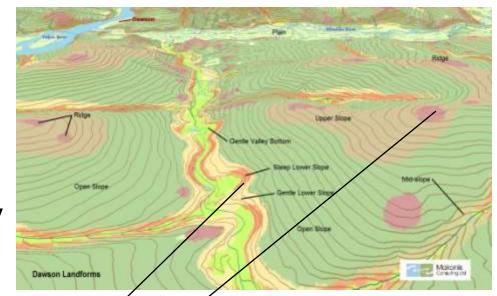
Challenges integrating spatial data

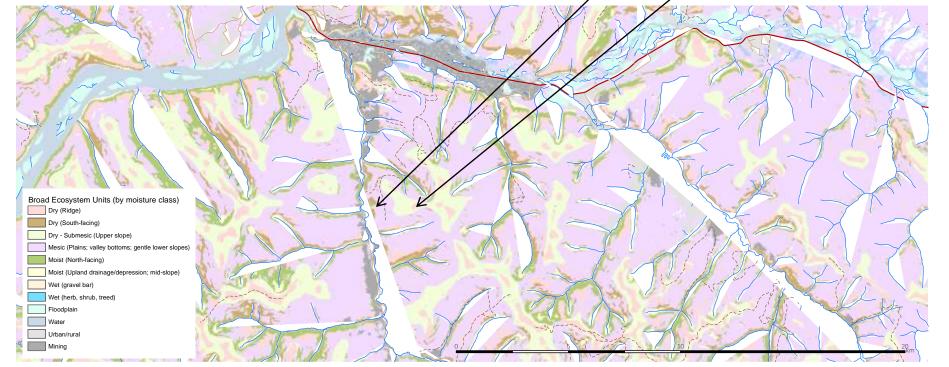


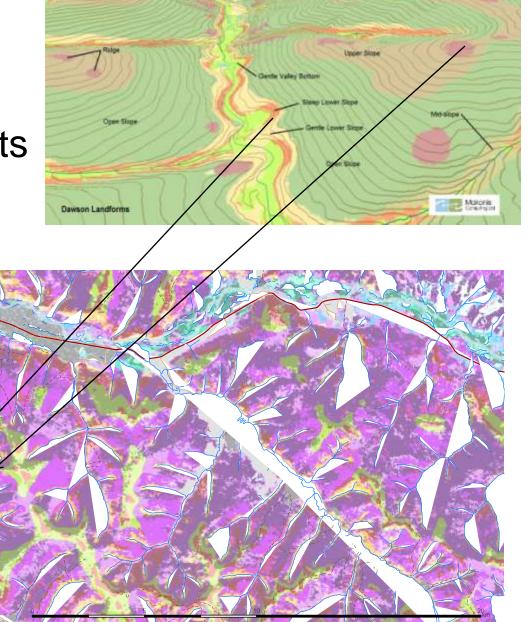



Methods

- Broad ecosystem classification
- Landscape position
- Integrate information
- Ecological context

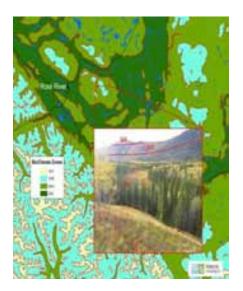





Preliminary Results

Broad Ecosystem Units by Relative Moisture Regime

Broad Ecosystem Units



Methods

- Broad ecosystem classification
- Landscape position
- Integrate information
- Ecological context
- Interpretation for resource management

Regional land use planning

- Cumulative effects assessment
- Wildlife habitat suitability/capability
- Map sensitive or rare ecosystems
- Map land capability
- Identify ecological patterns and processes

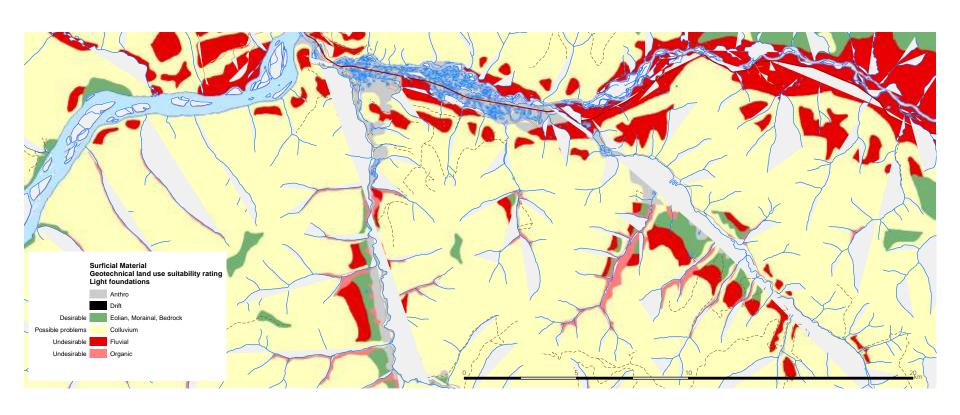
Regional land use planning

Transportation / Access

- Identify access routes and potential effects
 - Habitat
 - Wetlands
 - Floodplains
 - Other interpretations

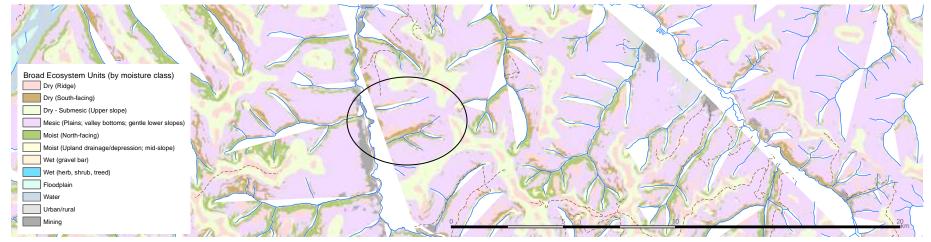
An Example: Mapping land capability

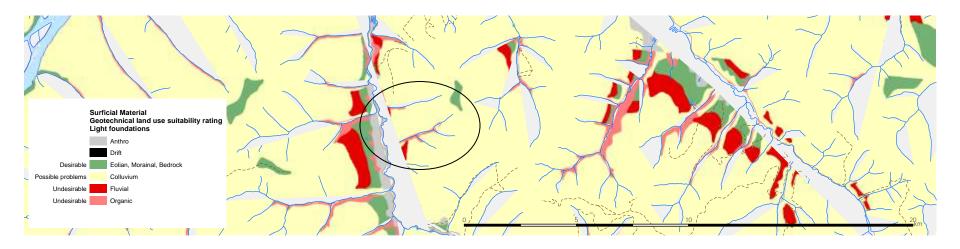
Table 1. Geotechnical land use suitability ratings and potential hazards of various surficial materials.


(based on Ryder and Howes, 1986)

Surficial Material	Map Unit	Constraints	Potential Hazards	Light Found- ations	Heavy Found- ations	Exca- vations	Liquid Waste Disposal	Solid Waste Disposal	Highways Railroads Airfields	Unpaved Roads	Above Ground Water storage
Colluvial	C	slope drainage topography	landslides	2	131	2	100	1003	1331	2	101
Eolian	E	1100-100		- 781	131	181	121	131	1080	781	131
Fluvial - active	E,	drainage	floods, shifting channels	191	131	100	100	101	1001	100	121
Fluvial - inactive	E ₁			1000	1282	100	121	131	10810	1000	1191
Glaciofluvial	P ^C	topography		200	2000	181	=2/	181	686	180	1088
Glaciolacustrine	La	drainage	erosion, slumping	100	(3)	100	(2)	2002	2	(80)	2
Lacustrine	L	topography	permafrost, thermokarst	380	(3)	385	12	1000	2	100	2
Organic	0	drainage		131	1030	100					
Till - basal	M	drainage		- 889	1881	2	12	-080	1000	580	1184
Till - ablation	M	topography		1000	1000	181	022	1100	1000	100	101
Bedrock	R	11///		100	200	131	1133	131	131	131	1131

- Desirable: terrain is generally capable of supporting the indicated land use.
- 2 = Possible problems: terrain may be suitable for the indicated land use, but potential problems exist.
- Undesirable: terrain is generally unsuitable for the indicated land use, although substantial modification of existing conditions (e.g., drainage, landfill) may overcome natural constraints.


Land capability – surficial interpretation "Light foundation"



Land capability – broad ecosystem interpretation

Key Questions

- Will ELC play a prominent role in policy, planning, environmental assessment, and decision-making?
- Will we form ELC policy (or best practices) around mitigation measures, restoration methods, cumulative effects assessment?

Thank you!

Questions?

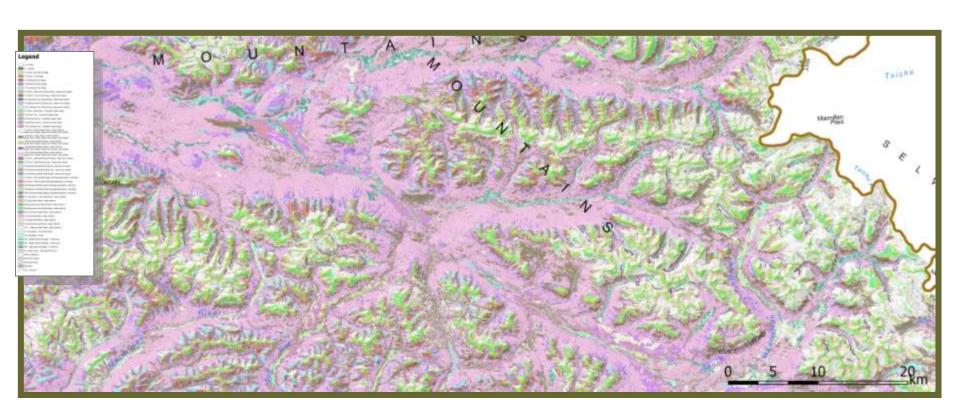
What is ecosystem classification?

Ecological equivalence: different ecological processes

Shrub Taiga — Willow

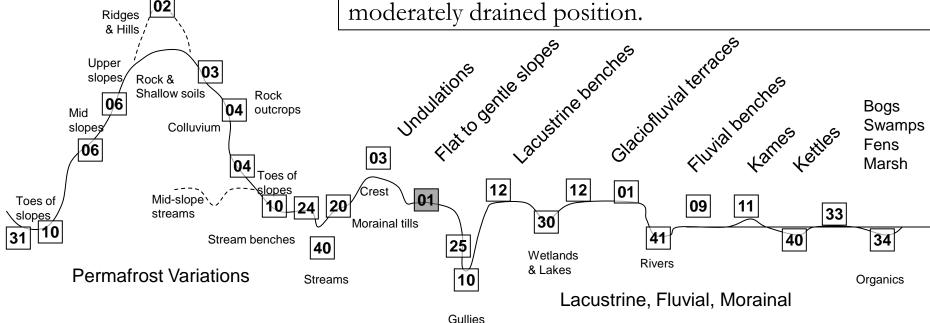
- •adjacent to streams and seepage area
- •gentle sloping
- moderately drained
- •moist to wet soils in sheltered valleys

Wooded Taiga – Willow


- •steep slopes such as avalanche chutes
- •well drained submesic to xeric soils.

Current projects

Preliminary results – Ross River



W The second sec

North South

Within a bioclimate subzone, ecosites are organized based on landscape position, or along a toposequence. Along this toposequence, characteristic ecosites occur in predictable locations, based on slope, aspect, parent material, and soil moisture and nutrient conditions. The reference ecosite occurs in the relatively level, moderately drained position

Permafrost Variations

